Sandia National Laboratories Waste Isolation Pilot Plant

Calculation of Actinide Solubilities for the WIPP Compliance Recertification Application

BOE 1.3.5.1.2

Author:

Author:

Technical Reviewer:

QA Reviewer:

in the an

529131

H. Brus

Laurence H. Brush, 6822

Yongliang Xiong, 6822

Wall, 6822

an Mario J. Chavez, 6820

5/8/03 Date

<u>5/8/03</u> Date

 $\frac{5/8/03}{Date}$

David S. Kessel, 6821

Management Reviewer:

WIPP: 1.3.5.1.2: PA: QA-L: Salas ation Only

TABLE OF CONTENTS

. 'art'r' o "

1 ABBREVIATIONS, ACRONYMS, AND INITIALISMS	3
2 INTRODUCTION	6
3 OBJECTIVES	7
4 CALCULATION OF SOLUBILITIES FOR THE CRA PA CALCULATIONS	8
5 ANALYSIS OF RESULTS 1	4
6 REFERENCES	0

\$

1 ABBREVIATIONS, ACRONYMS, AND INITIALISMS

der's "

a 1

Table 1 defines the abbreviations, acronyms, and initialisms used in this report.

Abbreviation, Acronym, or	
Initialism	Definition
acetate ion	CH ₃ CO ₂
Am	americium
am	amorphous
An(III)	actinide element(s) in the +III oxidation state
An(IV)	actinide element(s) in the +IV oxidation state
An(V)	actinide element(s) in the +V oxidation state
An(VI)	actinide element(s) in the +VI oxidation state
anhydrite	CaSO ₄
$B, B(OH)_3^{\times}$	boron, boric acid
Br, Br	bromine, bromide (ion)
Brine A	a synthetic brine representative of intergranular Salado brines
brucite	Mg(OH) ₂
С	carbon
Ca, Ca ²⁺	calcium, calcium ion
calcite	CaCO ₃
citrate ion	$((CO_2H)(CH_2))_2C(CO_2)OH$
CI, CI	chlorine, chloride ion
cm	centimeter(s)
CMS	(Compaq Computer Corp., now a part of the Hewlett-Packard Co.) DECset Code Management System
CO ₂	carbon dioxide
CO3 ²⁻	carbonate ion
CRA	(WIPP) Compliance Recertification Application
DOE	(U.S.) Department of Energy
EDTA	ethylenediaminetetraacetate
	(CH ₂ CO ₂ H) ₂ N(CH ₂) ₂ N(CH ₂ CO ₂ H)(CH ₂ CO ₂)
EPA	(U.S.) Environmental Protection Agency
ERDA-6	Energy Research and Development Administration (WIPP Well) 6, a synthetic brine representative of fluids in Castile brine reservoirs
f _{CO2}	fugacity (similar to the partial pressure) of CO2

Table 1. Abbreviations, Acronyms, and Initialisms.

Abbreviation, Acronym, or	
Initialism	Definition
Fm.	Formation
FMT or fmt	Fracture-Matrix Transport, a geochemical speciation and solubility code
g	gram(s)
glauberite	$Na_2Ca(SO_4)_2$
GWB	Generic Weep Brine, a synthetic brine representative of intergranular Salado brines
H or H ⁺	hydrogen or hydrogen ion
halite	NaCl
HCO ₃	bicarbonate ion
hydromagnesite	$Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$ or $Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$
hydromagnesite ₄₃₂₃	$Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$ $Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$
hydromagnesite ₅₄₂₄	$Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$ $Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$
[ionic strength
K, K ⁺	potassium, potassium ion
L, K	liter(s)
M	molar
m	molal
magnesite	MgCO ₃
Mg, Mg ²⁺	magnesium, magnesium ion
mg	milligram(s)
MgO	magnesium oxide, used to refer to the WIPP engineered barrier,
ingo	which includes periclase as the primary constituent and
	~5-10 wt % impurities
mM	millimolar
N	nitrogen
Na or Na ⁺	sodium, sodium ion
nesquehonite	MgCO ₃ ·3H ₂ O
Np	neptunium
D C	oxygen
OH.	hydroxide ion
oxalate	$(CO_2H)(CO_2)^{-1}$
PA	performance assessment
PAVT	(U.S. EPA's WIPP) Performance Assessment Verification Test
periclase	pure, crystalline MgO, the primary constituent of the WIPP
perietase	engineered barrier

Table 1. Abbreviations, Acronyms, and Initialisms (cont.).

4 14

7

Abbreviation, Acronym, or Initialism	Definition
pH	the negative, common logarithm of the activity of H ⁺
Pu	plutonium
Rev.	Revision
RH	relative humidity
SO42-	sulfate ion
Sp gr	specific gravity
TDS	total dissolved solids
Th	thorium
U	uranium
WIPP	(U.S. DOE) Waste Isolation Pilot Plant
wt	weight

Table 1. Abbreviations, Acronyms, and Initialisms (cont.).

15 71

2 INTRODUCTION

This analysis report describes the calculation of revised actinide solubilities in Waste-Isolation-Pilot-Plant (WIPP) brines. These solubilities will be used for the performance-assessment (PA) calculations for the U.S. Department of Energy's (DOE's) first WIPP Compliance Recertification Application (CRA). These solubilities will replace the solubilities used for the U.S. Environmental Protection Agency's (EPA's) WIPP Performance Assessment Verification Test (PAVT) in 1997, the solubilities currently in the WIPP Project's technical baseline.

This work was carried out under the third task of the analysis plan for the CRA PA solubility calculations (Brush and Xiong, 2003a, Subsection 7.3, FMT Calculations).

3 OBJECTIVES

mer in min

The objective of this work was to analyze those Fracture-Matrix-Transport (FMT) calculations (runs) described by Brush and Xiong (2003a, Subsection 7.3, FMT Calculations) that provided the solubilities that will be used directly in the CRA PA calculations.

Table 2 lists all of the FMT runs described by Brush and Xiong (2003a, Subsection 7.3). Sandia National Laboratories (SNL)/WIPP PA personnel executed all of these runs under the WIPP PA run-control system (see Brush and Xiong, 2003a, Section 6, Software Description) and archived them in the SNL/WIPP Code Management System (CMS) library entitled lib_ap098_fmt. The four runs that provided the solubilities that will be used for the CRA PA calculations are ap098_fmt_run012.in, ap098_fmt_run012.inguess, ap098_fmt_run012.out, etc. (hereafter referred to as "Run 12" or "12" in the text and in Table 3); Run 18; Run 22; and Run 28.

Table 3 also shows the FMT runs that provided actinide solubilities that will be used in the CRA PA. For ease of comparison, Table 3 is formatted identically to Tables 6 and 7.

We will analyze the remainder of the thirty runs described by Brush and Xiong (2003a, Subsection 7.4) after the CRA PA calculations. We will also carry out additional analysis of the four runs considered in this report. Analysis of the other runs and the additional analysis of the runs considered herein are not required for the CRA PA; however, the additional work to be conducted after the CRA PA will help us develop a better understanding of the effects of factors and parameters such as brine composition, $f_{\rm CO_2}$, and the presence of organics on actinide speciation and solubilities.

4 CALCULATION OF SOLUBILITIES FOR THE CRA PA CALCULATIONS

1 + 1 · · · · · · ·

We established revised An(III), An(IV), and An(V) solubilities for the CRA PA calculations by: (1) calculating solubilities for Am(III) and using the results for both Pu(III) and Am(III); (2) calculating solubilities for Th(IV) and using the results for Th(IV), U(IV), Np(IV) and Pu(IV); and (3) calculating solubilities for Np(V) and using the results only for Np(V). The results for Np(V) will be used for Np(V) but not for other actinides in the WIPP because Pu will not persist in significant quantities; and Subsection 5.2, PAVT Solubilities) provided the justification for this approach. The WIPP Actinide Source Term Program did not establish a solubility model for U(VI); instead, it used literature data to estimate the solubilities of U(VI) in the WIPP (Hobart and Moore, 1996; U.S. DOE, 1996, Appendix SOTERM, SOTERM-27 - SOTERM-28). These estimates will be used for U(VI) but not for other actinides because Np and Pu will not persist in significant quantities.

We calculated An(III), An(IV), and An(V) solubilities for the CRA PA calculations in GWB and ERDA-6. Brush and Xiong (2003a, Subsection 5.1, CCA Solubilities) provided the justification for using ERDA-6 to simulate brines from the Castile Fm.; Brush and Xiong (2003a, Subsection 5.3.1, Use of GWB) provided the justification for using GWB instead of Brine A to simulate intergranular Salado brines at or near the stratigraphic horizon of the WIPP. However, Snider (2003) revised the composition of GWB slightly from that specified by Brush and Xiong (2003a, Table 4 and Table 5). Table 4 of this report provides the revised composition of GWB used to calculate the CRA PA solubilities.

 $(CaCO_3)$ For each brine, we used the brucite $(Mg(OH)_2)$ -calcite carbonation reaction to buffer f_{CO_2} for the nonmicrobial PA realizations (vectors), and the brucite-hydromagnesite (Mg₅(CO₃)₄(OH)₂·4H₂O) carbonation reaction to buffer f_{CO}, (Thermodynamic data for hydromagnesite with the for the microbial vectors. $Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$ and $Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$ compositions are in the FMT database. However, the EPA mandated that hydromagnesite with the composition $Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$ be used in the FMT calculations for the PAVT, not hydromagnesite with the composition Mg₄(CO₃)₃(OH)₂·3H₂O. Furthermore, recent results from a laboratory study of MgO by Snider and Xiong (2002) at SNL imply that, under a controlled atmosphere consisting of 5% CO2, hydromagnesite with the composition Mg5(CO3)4(OH)2.4H2O is the dominant carbonation product in both GWB and ERDA-6 by about 91 days.) The brucite dissolution reaction buffered pH in all Brush and Xiong (2003a, Subsection 5.2, PAVT Solubilities; and cases. Subsection 5.3.2, Redefinition of Conditions for PA Vectors without Microbial Activity) provided the justification for the use of these reactions.

Table 2.	FMT Runs Completed Prior to the CRA PA Calculations. All runs archived in
	the CMS in lib_ap098_fmt. Runs that provided solubilities for the CRA PA
	calculations shown in bold font.

Run ID	Brine	f _{CO2} Buffer	Organics
	-		-
ap098_fmt_run001.in, ap098_fmt_run001.inguess,	Brine A	Brucite-calcite	No
ap098_fmt_run001.out, etc.		and an iteration	22.0
ap098_fmt_run002	Brine A	Brucite-calcite	Yes
ap098_fmt_run003	Brine A	Brucite-magnesite	No
ap098_fmt_run004	Brine A	Brucite-magnesite	Yes
ap098_fmt_run005	Brine A	Brucite-hydromagnesite4323	No
ap098_fmt_run006	Brine A	Brucite-hydromagnesite4323	Yes
ap098_fmt_run007	Brine A	Brucite-hydromagnesite54242	No
ap098_fmt_run008	Brine A	Brucite-hydromagnesite5424 ²	Yes
ap098_fmt_run009	Brine A	Brucite-nesquehonite	No
ap098_fmt_run010	Brine A	Brucite-nesquehonite	Yes
ap098_fmt_run011	GWB	Brucite-calcite	No
ap098_fmt_run012	GWB	Brucite-calcite	Yes
ap098_fmt_run013	GWB	Brucite-magnesite	No
ap098_fmt_run014	GWB	Brucite-magnesite	Yes
ap098_fmt_run015	GWB	Brucite-hydromagnesite43231	No
ap098_fmt_run016	GWB	Brucite-hydromagnesite4323	Yes
ap098_fmt_run017	GWB	Brucite-hydromagnesite ₅₄₂₄ ²	No
ap098_fmt_run018	GWB	Brucite-hydromagnesite5424 ²	Yes
ap098_fmt_run019	GWB	Brucite-nesquehonite	No
ap098_fmt_run020	GWB	Brucite-nesquehonite	Yes
ap098_fmt_run021	ERDA-6	Brucite-calcite	No
ap098_fmt_run022	ERDA-6	Brucite-calcite	Yes
ap098_fmt_run023	ERDA-6	Brucite-magnesite	No
ap098_fmt_run024	ERDA-6	Brucite-magnesite	Yes
ap098_fmt_run025	ERDA-6	Brucite-hydromagnesite4323	No
ap098_fmt_run026	ERDA-6	Brucite-hydromagnesite4323	Yes
ap098_fmt_run027	ERDA-6	Brucite-hydromagnesite54242	No
ap098_fmt_run028	ERDA-6	Brucite-hydromagnesite5424 ²	Yes
ap098_fmt_run029	ERDA-6	Brucite-nesquehonite	No
ap098_fmt_run030	ERDA-6	Brucite-nesquehonite	Yes

1. Hydromagnesite₄₃₂₃ = $Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$. 2. Hydromagnesite₅₄₂₄ = $Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$.

Actinide Oxidation State and Brine	Solubility, PAVT, All Vectors, No Organics	Solubility, CRA PA, Nonmicrobial Vectors, No Organics	Solubility, CRA PA, Nonmicrobial Vectors, Organics	Solubility, CRA PA, Microbial Vectors, No Organics	Solubility, CRA PA, Microbial Vectors, Organics
An(III), Brine A	Calculated previously ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis
An(III), GWB	Not calculated ¹	Analysis incomplete	Analyzed Run 12	Analysis incomplete	Analyzed Run 18
An(III), ERDA-6	Calculated previously ¹	Analysis incomplete	Analyzed Run 22	Analysis incomplete	Analyzed Run 28
An(IV), Brine A	Calculated previously ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
An(IV), GWB	Not calculated ¹	Analysis incomplete	Analyzed Run 12	Analysis incomplete	Analyzed Run 18
An(IV), ERDA-6	Calculated previously ¹	Analysis incomplete	Analyzed Run 22	Analysis incomplete	Analyzed Run 28
An(V), Brine A	Calculated previously ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
An(V), GWB	Not calculated ¹	Analysis incomplete	Analyzed Run 12	Analysis incomplete	Analyzed Run 18
An(V), ERDA-6	Calculated previously ¹	Analysis incomplete	Analyzed Run 22	Analysis incomplete	Analyzed Run 28

Table 3. FMT Runs Analyzed Prior to the CRA PA Calculations.

Actinide	Solubility,	Solubility, CRA PA,	Solubility, CRA PA,	Solubility, CRA PA,	Solubility, CRA PA,
Oxidation	PAVT,	Nonmicrobial	Nonmicrobial	Microbial	Microbial
State and	All Vectors,	Vectors,	Vectors,	Vectors,	Vectors,
Brine	No Organics	No Organics	Organics	No Organics	Organics
An(VI),	Estimated	See Table 7	See Table 7	See Table 7	See Table 7
Brine-A	previously ²				
An(VI),	Not	See Table 7	See Table 7	See Table 7	See Table 7
GWB	estimated ²				
An(VI),	Estimated	See Table 7	See Table 7	See Table 7	See Table 7
ERDA-6	previously ²				

Table 3. FMT Runs Analyzed Prior to the CRA PA Calculations (cont.).

in " ' va

- K

 From Trovato (1997, Attachment 2), U.S. EPA (1998a, Table 5), U.S. EPA (1998b, Subsection 4.10.4, Tables 4.10-1, 4.10-3 and 4.10-4; and Subsection 12.4, Table 12.4-1), and U.S. EPA (1998c, Subsections 5.26-5.32 and Section 6.0, Table 6.4).

 Estimated for the CCA PA by Hobart and Moore (1996). See also U.S. DOE, 1996, Appendix SOTERM, SOTERM-27 - SOTERM-28).

Element or Property	Brine A ¹	GWB ²	ERDA-6 ³
B(OH) ₃	20 mM ⁴	155 mM	63 mM
Na ⁺	1.83 M	3.48 M	4.87 M
Mg ²⁺	1.44 M	1.00 M	19 mM
K*	770 mM	458 mM	97 mM
Ca ²⁺	20 mM	14 mM	12 mM
SO4 ²⁻	40 mM	175 mM	170 mM
Cl	5.35 M	5.51 M	4.8 M
Br	10 mM	26 mM	11 mM
Total inorganic C (as HCO ₃ ⁻)	10 mM	Not reported	16 mM
pH	6.5	Not reported	6.17
Sp gr	1.2	1.2	1.216
TDS	306,000 mg/L	Not reported	330,000 mg/L

Table 4. Compositions of Brine A, GWB, and ERDA-6 Prior to Reaction.

1. From Molecke (1983).

2. From Snider (2003).

3. From Popielak (1983).

4. Reported by Molecke (1983) as BO3³⁻.

For each brine and carbonation reaction, we included the following organic ligands in the solubility calculations for the CRA PA: acetate (CH_3CO_2) , citrate $(((CO_2H)(CH_2))_2C(CO_2)OH)$, EDTA (ethylenediaminetetraacetate, $(CH_2CO_2H)_2N(CH_2)_2N(CH_2CO_2H)(CH_2CO_2)$), and oxalate $(CO_2H)(CO_2)$). Brush and Xiong (2003b) calculated revised concentrations of these organic ligands in WIPP brines based on information provided by Crawford (2003). Table 5 provides the revised concentrations of these ligands used for the CRA PA solubilities.

Table 5. Concentrations of Ligands for the Solubility Calculations for the CRA PA. From Brush and Xiong (2003b) and Crawford (2003).

i a marine to

5

Ligand	Concentration (M)
Acetate	5.05×10^{-3}
Citrate	3.83×10^{-4}
EDTA	$3.87 imes 10^{-6}$
Oxalate	2.16×10^{-2}

5 ANALYSIS OF RESULTS

int of

We analyzed FMT Runs 12, 18, 22, and 28 for this report. These runs provided the solubilities that will be used directly in the CRA PA calculations. We will analyze the rest of the runs listed in Table 2 later. We will also carry out additional analysis of the four runs considered in this report. (The solubilities and other information that we will obtain from the other runs is not required for the CRA PA calculations; instead, the additional analysis to be conducted after the CRA PA will help us develop a better understanding of actinide speciation and solubilities in the WIPP.)

We obtained the solids in equilibrium with GWB and ERDA-6 directly from the table entitled "Table of Concentrations for Batch System" in each of the FMT output files. This table identifies the solids present in the first column ("Species Name") by chemical composition and mineral name or other description (if any) connected by a solid line. The nonradioactive solids in equilibrium with GWB in the run carried out for the nonmicrobial vectors were halite (NaCl), anhydrite (CaSO₄), brucite, Mg₂Cl(OH)₃·4H₂O, and calcite. (Because of the presence of Mg₂Cl(OH)₃·4H₂O, f_{CO2} was actually buffered by two reactions, the brucite-calcite and the Mg₂Cl(OH)₃·4H₂O-calcite carbonation reactions; and pH was buffered by two reactions, the brucite and the $Mg_2Cl(OH)_3.4H_2O$ dissolution reactions.) The stable solids in equilibrium with GWB in the run for the microbial vectors were halite, anhydrite, brucite, $Mg_2Cl(OH)_3 \cdot 4H_2O$, and hydromagnesite $(Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O)$. (In this run, f_{CO2} was actually buffered by two reactions, the brucite-hydromagnesite $(Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O)$ and the $Mg_2Cl(OH)_3 \cdot 4H_2O$ -hydromagnesite carbonation reactions; and pH was buffered by two reactions, the brucite and the Mg₂Cl(OH)₃·4H₂O dissolution reactions.) The nonradioactive solids in equilibrium with ERDA-6 in the run conducted for the nonmicrobial vectors were halite, anhydrite, glauberite ($Na_2Ca(SO_4)_2$), brucite, and calcite. Those in equilibrium with ERDA-6 in the run for the microbial vectors were halite, anhydrite, brucite, and hydromagnesite (Mg₅(CO₃)₄(OH)₂·4H₂O). The solids that controlled the solubilities of Th, Np, and Am were $ThO_2(am)$ ("hydrous thorium oxide"), KNpO2CO3, and Am(OH)3, respectively.

We obtained the density, log f_{CO_2} , ionic strength (I), pH, and relative humidity (RH) of GWB and ERDA-6 at equilibrium with the MgO reaction products from output below "Table of Concentrations for Batch System." Table 6 provides the results for Runs 12, 18, 22, and 28. The RH of these brines is simply related to the activity of H₂O: for example, a RH of 73.3%, calculated for GWB under conditions relevant for the nonmicrobial vectors (brucite-calcite carbonation reaction) with organics (see Table 6), is equivalent to an H₂O activity of 0.733. None of these properties will be used in the CRA PA calculations.

Downes (2003) obtained the solubilities of Th, Np, and Am from Runs 12, 18, 22, and 28 (the solubilities that will be used directly in the CRA PA calculations) by adding the concentrations of all of the dissolved species of Th, Np, and Am, respectively, in the column entitled "Molarity" in "Table of Concentrations for Batch System." Downes (2003) imported these tables into Microsoft Excel 2000 spreadsheets, and then sorted the species by radioelement and by dissolved and solid species. Finally, she added the concentrations of all of the dissolved species for each radioelement to obtain the solubilities of Th, Np, and Am (see Table 7).

We will use the same procedure to obtain Th, Np, and Am solubilities from the other runs shown in Table 2; and to obtain the compositions of Brine A, GWB, and ERDA-6 after equilibration with minerals such as halite, anhydrite, brucite, and calcite, magnesite, hydromagnesite (both $Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$ and $Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$), and nesquehonite ($MgCO_3 \cdot 3H_2O$). (This information is not required for the CRA PA.)

We used estimates of the solubilities of U(VI) from Hobart and Moore (1996) and U.S. DOE, 1996, Appendix SOTERM, SOTERM-27 - SOTERM-28) to estimate the solubility of An(VI) for the CRA PA. (These estimates will be used for U(VI) but not for other actinides in the WIPP because Np and Pu will not persist in significant quantities in the +VI oxidation state.)

Property and Brine	PAVT, All Vectors, No Organics	CRA PA, Nonmicrobial Vectors, No Organics	CRA PA, Nonmicrobial Vectors, Organics	CRA PA, Microbial Vectors, No Organics	CRA PA, Microbial Vectors, Organics
Density, Brine A	Not . reported ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
Density, GWB	Not calculated ¹	Analysis incomplete	1.23 g/cm ³	Analysis incomplete	1.23 g/cm ³
Density ERDA-6	Not reported ¹	Analysis incomplete	1.22 g/cm ³	Analysis incomplete	1.22 g/cm ³
Log f _{CO2} , Brine A	-5.50 ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
Log f _{CO2} , GWB	Not calculated ¹	Analysis incomplete	-5.48	Analysis incomplete	-5.50
Log f _{CO2} , ERDA-6	-5.50 ¹	Analysis incomplete	-6.15	Analysis incomplete	-5.50
I, Brine A	Not reported ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
I, GWB	Not calculated ¹	Analysis incomplete	7.54 m	Analysis incomplete	7.54 m
i, ERDA-6	Not reported ¹	Analysis incomplete	6.76 m	Analysis incomplete	6.73 m

Table 6. Comparison of Density, Log f_{CO_2} , Ionic Strength (I), pH, and Relative Humidity (RH) Calculated for the PAVT and the CRA PA.

· (3 ***) & * *

Property and Brine	PAVT, All Vectors, No Organics	CRA PA, Nonmicrobial Vectors, No Organics	CRA PA, Nonmicrobial Vectors, Organics	CRA PA, Microbial Vectors, No Organics	CRA PA, Microbial Vectors, Organics
pH, Brine A	8.69 ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
pH, GWB	Not calculated ¹	Analysis incomplete	8.69	Analysis incomplete	8.69
pH, ERDA-6	9.24 ¹	Analysis incomplete	8.99	Analysis incomplete	9.02
RH, Brine A	Not reported ¹	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
RH, GWB	Not calculated ¹	Analysis incomplete	73.3%	Analysis incomplete	73.3%
RH, ERDA-6	Not reported ¹	Analysis incomplete	74.8%	Analysis incomplete	74.8%

Table 6.	Comparison	of	Density,	Log	f _{CO2} ,	Ionic	Strength	(I),	pH,	and
	Relative Humidity (RH) Calculated for the PAVT and the CRA PA (cont.).									

 From Trovato (1997, Attachment 2), U.S. EPA (1998a, Table 5), U.S. EPA (1998b, Subsection 4.10.4, Tables 4.10-1, 4.10-3 and 4.10-4; and Subsection 12.4, Table 12.4-1), and U.S. EPA (1998c, Subsections 5.26-5.32 and Section 6.0, Table 6.4).

f _{CO2} , pH Actinide Oxidation State, and Brine	Solubility, PAVT, All Vectors, No Organics (M)	Solubility, CRA PA, Nonmicrobial Vectors, No Organics (M)	Solubility, CRA PA, Nonmicrobial Vectors, Organics (M)	Solubility, CRA PA, Microbial Vectors, No Organics (M)	Solubility, CRA PA, Microbial Vectors, Organics (M)
An(III), Brine-A	$1.2 \times 10^{-7.1}$	Analysis	Analysis	Analysis	Analysis
An(III), GWB	Not calculated ¹	Analysis incomplete	3.07×10^{-7}	Analysis incomplete	3.07×10^{-7}
An(III), ERDA-6	1.3 × 10 ^{-8, 1}	Analysis incomplete	1.77×10^{-7}	Analysis incomplete	1.69×10^{-7}
An(IV), Brine-A	1.3 × 10 ^{-8, 1}	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
An(IV), GWB	Not calculated ¹	Analysis incomplete	1.24×10^{-8}	Analysis incomplete	1.19 × 10 ⁻⁸
An(IV), ERDA-6	$4.1 \times 10^{-8, 1}$	Analysis incomplete	5.84×10^{-9}	Analysis incomplete	2.47×10^{-8}
An(V), Brine A	$2.4 \times 10^{-7, 1}$	Analysis incomplete	Analysis incomplete	Analysis incomplete	Analysis incomplete
An(V), GWB	Not calculated ¹	Analysis incomplete	9.72×10^{-7}	Analysis incomplete	1.02×10^{-6}
An(V), ERDA-6	$4.8 \times 10^{-7, 1}$	Analysis incomplete	2.13×10^{-5}	Analysis incomplete	5.08 × 10 ⁻⁶

Table 7. Comparison of Actinide Solubilities Calculated (An(III), An(IV), and An(V)) or Estimated (An(VI)) for the PAVT and the CRA PA.

f _{CO2} , pH Actinide Oxidation State, and	Solubility, PAVT, All Vectors, No Organics	Solubility, CRA PA, Nonmicrobial Vectors, No Organics	Solubility, CRA PA, Nonmicrobial Vectors, Organics	Solubility, CRA PA, Microbial Vectors, No Organics	Solubility, CRA PA, Microbial Vectors, Organics
Brine	(M)	(M)	(M)	(M)	(M)
An(VI), Brine-A	8.7 × 10 ^{-6, 2}	Not required for CRA PA	Not required for CRA PA	Not required for CRA PA	Not required for CRA PA
An(VI), GWB	Not estimated ²	8.7 × 10 ^{-6, 3}	8.7 × 10 ^{-6, 3}	8.7 × 10 ^{-6, 3}	8.7 × 10 ^{-6, 3}
An(VI), ERDA-6	$8.8 \times 10^{-6, 2}$	8.8 × 10 ^{-6, 4}	8.8 × 10 ^{-6, 4}	8.8 × 10 ^{-6, 4}	8.8 × 10 ^{-6, 4}

Table 7.	Comparison of Actinide Solubilities Calculated (An(III), An(IV), and An(V)) or
	Estimated (An(VI)) for the PAVT and the CRA PA.

 From Trovato (1997, Attachment 2), U.S. EPA (1998a, Table 5), U.S. EPA (1998b, Subsection 4.10.4, Tables 4.10-1, 4.10-3 and 4.10-4; and Subsection 12.4, Table 12.4-1), and U.S. EPA (1998c, Subsections 5.26-5.32 and Section 6.0, Table 6.4).

2. Estimated for the CCA PA by Hobart and Moore (1996). See also U.S. DOE, 1996, Appendix SOTERM, SOTERM-27 - SOTERM-28).

3. Estimate of Hobart and Moore (1996) for Brine A applied to GWB.

4. Estimate of Hobart and Moore (1996) for ERDA-6 reapplied to ERDA-6.

6 REFERENCES

15 2 Y 1 21

- Brush, L.H., and Y. Xiong. 2003a. "Calculation of Actinide Solubilities for the WIPP Compliance Recertification Application, Analysis Plan AP-098. Unpublished analysis plan, AP-098, Rev. 1. Carlsbad, NM: Sandia National Laboratories. ERMS 527714.
- Brush, L.H., and Y. Xiong. 2003b. "Calculation of Organic Ligand Concentrations for the WIPP Compliance Recertification Application. Unpublished report, April 14, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 527567.
- Crawford, B. 2003. "Updated Estimate of Complexing Agents in Transuranic Solidified Waste Forms Scheduled for Disposal and Emplaced at WIPP." Unpublished letter to C.D. Leigh, April 8, 2003. Carlsbad, NM: Los Alamos National Laboratory. ERMS 527409.
- Downes, P.S. 2003. "Spreadsheet Calculations of Actinide Solubilities for the WIPP Compliance Recertification Application." Unpublished memorandum to L.H. Brush, April 21, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 528395.
- Hobart, D.E., and R.C. Moore. 1996. "Analysis of Uranium(VI) Solubility Data for WIPP Performance Assessment." Unpublished report, May 28, 1996. Albuquerque, NM: Sandia National Laboratories. ERMS 239856.
- Molecke, M.A. 1983. A Comparison of Brines Relevant to Nuclear Waste Experimentation. SAND83-0516. Albuquerque, NM: Sandia National Laboratories.
- Popielak, R.S., R.L. Beauheim, S.R. Black, W.E. Coons, C.T. Ellingson and R.L. Olsen. 1983. Brine Reservoirs in the Castile Formation, Waste Isolation Pilot Plant Project, Southeastern New Mexico. TME 3153. Carlsbad, NM: U.S. Department of Energy WIPP Project Office.
- Snider, A.C. 2003. "Verification of the Definition of Generic Weep Brine and the Development of a Recipe for This Brine." Unpublished report, April 8, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 527505.
- Snider, A.C., and Y.-L. Xiong. 2002. "Carbonation of Magnesium Oxide," "Sandia National Laboratories Technical Baseline Reports, WBS 1.3.5.3, Compliance Monitoring; WBS 1.3.5.4, Repository Investigations, Milestone RI130, July 31, 2002." Carlsbad, NM: Sandia National Laboratories. 4.1-1 to 4.1-28. ERMS 523189.

- Trovato, E.R. 1997. Untitled letter from E.R. Trovato to G. Dials, April 25, 1997. Washington, DC: U.S. Environmental Protection Agency Office of Radiation and Indoor Air.
- U.S. DOE. 1996. Title 40 CFR Part 191 Compliance Certification Application for the Waste isolation Pilot Plant, Vol. 1-21. Carlsbad, NM: U.S. Department of Energy Carlsbad Area Office.
- U.S. EPA. 1998a. "Compliance Application Review Documents for the Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's Compliance with the 40 CFR Part 191 Disposal Regulations: Final Certification Decision. CARD 23: Models and Computer Codes." EPA Air Docket A93-02-V-B-2. Washington, DC: U.S. Environmental Protection Agency Office of Radiation and Indoor Air.
- U.S. EPA. 1998b. "Technical Support Document for Section 194.23 Models and Computer Codes." EPA Air Docket A93-02-V-B-6. Washington, DC: U.S. Environmental Protection Agency Office of Radiation and Indoor Air.
- U.S. EPA. 1998c. "Technical Support Document for Section 194.23: Parameter Justification Report." EPA Air Docket A93-02-V-B-14. Washington, DC: U.S. Environmental Protection Agency Office of Radiation and Indoor Air.